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1. Introduction

Verifying and validating the performance of a computational simulation is a challenging problem of interest
in all applied sciences [12,13]. Measuring the performance of a numerical algorithm against standard bench-
mark test cases is often the first step in assessing algorithm performance. These test cases are used repeatedly
over long periods of time as algorithms are devised and improved. In addition, new benchmark test cases are
continually developed [9]. Effective benchmarks are characterized by having either a complete or an approxi-
mate analytical solution against which the numerical results can be quantitatively compared [1,5]. It is also pos-
sible, although less common, to use carefully collected laboratory data to benchmark a numerical code [18,22].

To identify an effective benchmark test case, a balance must be found between two opposing requirements:
the benchmark ought to be sufficiently complex to rigorously challenge a numerical algorithm, and it should
also be amenable to analysis.

Certain problems have become synonymous with algorithm development in various disciplines. Particular
problems from fluid mechanics, for example, are associated with long-celebrated benchmarks. Algorithms
designed to solve steady incompressible Navier–Stokes flows are often tested with lid-driven cavity flow prob-
lems and Burggraf’s solution [1,3]. Algorithms designed to solve convectively-driven flow in porous media are
usually benchmarked with Henry’s solution for salt water intrusion [5,19]. Many other examples of popular
benchmark test cases can be found in the literature.

Constructing numerical algorithms to accurately approximate the solution of hyperbolic conservation laws
(HCL) is of wide interest and challenging. Typically HCL algorithms are tested with a suite of benchmark
problems starting with single species linear advection [2,3,6,10]. Linear advection has the advantage of being
conceptually simple, analytically tractable and clearly identifies susceptibility to numerical diffusion and
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.03.016

* Corresponding author. Tel.: +61 3 83446517; fax: +61 3 83444599.
E-mail address: m.simpson@ms.unimelb.edu.au (M.J. Simpson).

mailto:m.simpson@ms.unimelb.edu.au


M.J. Simpson, K.A. Landman / Journal of Computational Physics 225 (2007) 6–12 7
artificial oscillation. Beyond single species linear advection, algorithms are often benchmarked with Burger’s
equation. This problem retains the simplicity of a single species HCL with the complexity of introducing a
nonlinear flux which tests an algorithm’s ability to predict shock formation. Perhaps the most common bench-
mark for HCL algorithms is Sod’s shock tube problem [21]. This is a rigorous benchmark requiring the solu-
tion of three coupled nonlinear equations. Sod’s shock tube problem is used to test whether a code can predict
solutions with multiple discontinuities. Variants of Sod’s problem have been used for code development in
numerous applications including dam break phenomena [23], star formation [17] and the dynamics of volcanic
ash plumes [14].

Although various other HCL benchmarks are used for algorithm development, such as traffic flow prob-
lems, acoustic dynamics and the Buckley–Leverett equation [2,3,6,10], there does not appear to be any partic-
ular problem more complex than the shock tube problem that has become a clear standard choice for
benchmarking. We propose a new test case which has arisen in computational biology relevant to chemotactic
cell invasion [15,20]. The invasion problem involves nonlinearities and coupling in both the flux and source
terms. These features make the numerical solution of the invasion problem more challenging than the shock
tube problem. However, at the same time, many properties of traveling wave solutions to the invasion problem
can be deduced exactly with nonstandard phase plane analysis. The invasion problem is sufficiently rigorous
that it tests an algorithm’s ability to approximate solutions with multiple discontinuities and complicated non-
monotone profiles.

A major historical difficulty in developing numerical algorithms for HCLs is the formation of artificial
numerical oscillations. These oscillations often appear close behind a shock [10,21]. In this work we present
an unusual test case where the true analytical solution is nonmonotone with an oscillatory region appearing
just behind a shock. Therefore the correct solution has certain properties which are not shared by standard
benchmark test cases.

We will briefly present the invasion model, describe the analysis, specify certain test cases and quantitatively
compare numerical and analytical results. The details of a suite of solutions are tabulated for benchmarking
purposes.
2. Chemotactic invasion model

Conservation of mass for chemotactic migration of cells with density n and chemoattractant concentration
g in one spatial dimension gives
on
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Here x is the spatial coordinate, t is time and v(g) is the chemotactic sensitivity function. In these scaled equa-
tions we specify the source term for n as a logistic proliferation term f ðnÞ ¼ nð1� nÞ. The source term for g

incorporates zeroth order production, linear decay and a nonlinear uptake term as given by
hðg; nÞ ¼ bð1� gÞ � cng. This system is strictly hyperbolic and details of the scaling used to nondimensionalize
Eq. (1) are given elsewhere [20].

Most applications of hyperbolic invasion models make use of a constant v(g) [15,20]. For initial conditions
nðx; 0Þ with compact support, the traveling wave solutions are monotonically decreasing and shock-fronted.
Recent theoretical work has demonstrated the existence of a wide range of traveling wave solutions with com-
plex nonmonotone shapes and multiple discontinuities [8]. These solutions are obtained by using different v(g)
functions. The intricate detail of these solutions means that they are ideal for benchmarking since several fea-
tures of the solution, such as the speed of invasion, length and position of discontinuities and the location of
turning points in the solution can be used for algorithm benchmarking.
3. Phase plane analysis

Introducing the traveling wave coordinate for right-moving waves, z ¼ x� ct where c > 0 is the dimension-
less wave speed, the conservation system can be written as a system of first order odes on �1 < z <1:
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Combining these equations gives
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where v0 ¼ dvðgÞ=dg and partial derivatives are denoted with subscripts.
In the ðg; nÞ phase plane, the n-nullcline is given by F ðg; nÞ ¼ 0, provided W ðg; nÞ 6¼ 0 simultaneously. In fact

the derivative dn=dz is undefined along the curve where W ðg; nÞ ¼ 0. This is referred to as a ‘‘wall of singular-
ities’’ [16]. Trajectories approaching the wall of singularities can only pass through the wall at special points
where W ðn; gÞ ¼ F ðn; gÞ ¼ 0. Such a point is called a ‘‘hole in the wall’’ [16]. At these points, dn=dz is finite.

For our choice of kinetics f and h in (1) we seek a trajectory in the ðg; nÞ phase plane connecting the steady
states ðb=ðbþ cÞ; 1Þ and ð1; 0Þ. Such solutions exist for every c P cmin [7]. Discontinuous solutions are permit-
ted and the details can be derived using the Lax entropy condition and the Rankine–Hugoniot jump condition
[4,10,11]. The jump condition shows that both n and og=ox can support a discontinuity while g is continuous.
The value of the dependent variables on the left and right side of the jump discontinuity are denoted with sub-
scripts L and R. The jump condition for n is W ðg; n�Þ ¼ 0 with n� ¼ ðnL þ nRÞ=2. This means that any discon-
tinuity in n always jumps the wall of singularities with the wall located at the center of the jump. The length of
the discontinuity in n will be denoted as K ¼ nL � nR. For our kinetics, at the minimum wave speed cmin, the
value of n at the endpoints of the leading shock are given by nR ¼ 0 and nL ¼ c2

min=ðcvð1ÞÞ. Therefore, the
length of the leading shock is given by
K ¼ c2
min

cvð1Þ : ð5Þ
This quantity is used to assess algorithm performance.
The location of the wall, nullclines, steady states, and vectors defining the joining trajectory are known

exactly for any given c P cmin. The trajectories are numerically generated using standard Mathematica ode
routines. The initial point used to solve for the trajectory which connects the two steady states is iteratively
determined. Only the case c ¼ cmin is considered here.

4. Numerical solution

We solve (1) on 0 < x < L where L is large enough to allow the formation of traveling waves with constant
speed and shape. Zero flux boundary conditions are imposed at x = 0. The long term traveling waves, moving
at the minimum wave speed cmin, are independent of the initial condition provided that nðx; 0Þ has compact sup-
port. We set nðx; 0Þ ¼ 1�Hðx� 1Þ and gðx; 0Þ ¼ 1 for all 0 < x < L where H is the Heaviside step function.

Numerical solutions are obtained with a high-resolution central scheme by Kurganov and Tadmor [6].
Details of the implementation are given previously [6,20]. This algorithm is chosen since it is known to per-
form well for similar problems involving nonlinear HCLs with discontinuous solutions [7]. Uniform spatial
and temporal discretizations are chosen to give grid independent results. A minmod flux limiter is used and
the temporal integration is performed with a third order Runge Kutta algorithm. At each time step the loca-
tion of a particular contour nðx; tÞ ¼ n̂ is evaluated and used to approximate the wave speed c over successive
time steps. Simulations are performed until c settles to a constant.

5. Results and discussion

Recent analysis has shown that a rich variety of nonmonotone invasion profiles can be generated by vary-
ing v(g) [8]. We focus on two trigonometric forms given by
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vðgÞ ¼ 2þ sinðkpgÞ; vðgÞ ¼ 2þ cosðkpgÞ; ð6Þ

where k is a positive integer, giving vðgÞ > 0.

Traveling wave solutions are generated with the pde solver and the solutions compared with phase plane
results, using both the sine and cosine v(g) functions for various values of k. Detailed profiles are given for
k = 1 and k = 4 for the sine function in Fig. 1. The traveling wave solutions have a discontinuous leading
edge which has been translated so it is positioned at x = 0. These profiles demonstrate the general behaviour
of the chemotaxis system and illustrate how the pde solver performs relative to the phase plane analysis.
Three kinds of quantitative comparison are made. First, the ðg; nÞ coordinate of turning points of n in
the numerical profile are compared to the ðg; nÞ coordinate in the phase plane where the solution trajectory
intersects a nullcline. Second, the ðg; nÞ coordinate of any discontinuities in the numerical profile of n are
compared to the ðg; nÞ coordinate of any jumps in n in the phase plane. Third, the length of any disconti-
nuity in n in the numerical profile should correspond to the length of the discontinuity in n in the phase
plane. We note that other than indicating the length of a discontinuity in n, the location of the wall and
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Comparison of numerical and phase plane results for nonmonotone chemotactic invasion. The endpoints of the discontinuities in
e solution are shown with a blue dot and the nondimensional invasion speed is shown. The trajectory in the phase plane is shown
solid black line joining the two steady states shown with yellow dots. The dotted line is the wall W ðg; nÞ ¼ 0 and the nullcline is in
ðg; nÞ ¼ 0. Results in (a) and (b) correspond to vðgÞ ¼ 2þ sinðpgÞ. The traveling waves in (a) and (b) are oscillatory and shock-
. The location of the turning point in n is identified and the ðg; nÞ coordinates are digitized (dotted magenta lines) showing that both

merical and phase plane results give the location of the turning point as ðg; nÞ ¼ ð0:56; 0:62Þ. Results in (c) and (d) show equivalent
for vðgÞ ¼ 2þ sinð4pgÞ. The traveling waves in (c) and (d) show a more intricate invasion profile with multiple discontinuities and
turning points. The location of the left-most turning point in n is identified and the ðg; nÞ coordinates are digitized (dotted magenta
howing that both the numerical and phase plane results give the location of the turning point as ðg; nÞ ¼ ð0:11; 0:81Þ. All results
ond to b ¼ 0:01 and c = 1. The pde solver used Dx ¼ 0:01 and Dt ¼ 0:005.



Table 1
Summary of nonmonotone invasion profiles showing details of the wavespeed, position and coordinates of the turning points and
discontinuities

v(g) Speed
cmin

Turning point 1
ðx; g; nÞ

Turning point 2
ðx; g; nÞ

Turning point 3
ðx; g; nÞ

Discontinuity 1
ðx; g; nL; nRÞ

Leading shock
length K

Discontinuity 2
ðx; g; nL; nRÞ

2þ sinðpgÞ 1.23 (�1.1,0.56,0.62) – – (0,1,0.76,0) 0.76 –
2þ sinð2pgÞ 0.93 (�1.6,0.28,0.65) (�0.5,0.71,1.12) – (0,1,0.43,0) 0.43 –
2þ sinð3pgÞ 1.14 (�3.7,0.15,0.79) (�0.9,0.72,0.37) – (0,1,0.65,0) 0.65 (�2.5,0.37,1.27,0.79)
2þ sinð4pgÞ 1.03 (�3.7,0.11,0.81) (�1.1,0.54,0.38) (�0.2,1.19,0.86) (0,1,0.53,0) 0.53 (�2.6,0.25,1.17,0.94)
2þ cosðpgÞ 0.93 (�1.5,0.31,0.70) (�0.1,0.90,0.90) – (0,1,0.86,0) 0.86 –
2þ cosð2pgÞ 1.05 (�3.8,0.11,0.84) (�2.7,0.28,0.97) (�0.4,0.35,0.88) (0,1,0.37,0) 0.37 –
2þ cosð4pgÞ 1.04 (�1.5,0.42,0.46) (�0.6,0.74,1.35) – (0,1,0.36,0) 0.36 –

All solutions correspond to b ¼ 0:01, c = 1 and c ¼ cmin. All ðg; nÞ coordinates from both the numerical and phase plane results corre-
spond identically. The leading shock length K corresponds to the length of discontinuity 1 given in column 6.
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holes in the phase plane do not correspond to any properties of the numerical solution that are discernable
or comparable.

Results for the sine v(g) with k = 1 in Fig. 1a and b show an oscillatory invasion profile with one turn-
ing point in n and a discontinuous front. The numerical and analytical coordinates of the turning points
can be quantitatively compared. For example, the location of the turning point in Fig. 1a is digitized from
the numerical profile to give ðg; nÞ ¼ ð0:56; 0:62Þ. In the phase plane, the solution trajectory intersects the
nullcline at the same value of ðg; nÞ. Therefore, we observe an exact correspondence between the numerical
simulation and analysis. The endpoints of the discontinuity in n are clearly shown in Fig. 1a and b. The
length of the leading shock predicted numerically can be determined by digitizing the height of the discon-
tinuity at x = 0 in Fig. 1a giving K ¼ 0:76. This result is corresponds exactly with the phase plane analysis
through Eq. (5). Hence, the numerical results coincide with the analysis giving confidence in the numerical
solution.

Results for the sine v(g) with k = 4 are given in Fig. 1c and d showing a stunningly complex invasion profile
with two discontinuities and three turning points in n. The coordinates of these features were quantitatively
checked with the corresponding points in the phase plane. This comparison shows again that the pde solver
accurately captures the details of this fascinating invasion profile.

Detailed results are summarized in Table 1 showing (i) the invasion speed cmin, (ii) the coordinates of turn-
ing points in n, and (iii) the coordinates and length of discontinuities in n. This table contains data that has
been generated by digitizing results from both the numerical profiles and phase plane trajectories as well as
using Eq. (5) to predict the length of the leading shock. In all cases we found that the results from the phase
plane are identically replicated by the numerical algorithm within two decimal places. This data is suitable for
algorithm benchmarking purposes. Each of these seven traveling wave profiles are characterized by having an
oscillatory region just behind the leading shock. Results for the cosine v(g) function with k = 3 are not
included in the table. In this case the invasion profile contains a turning point that is very close behind the
leading shock. It is difficult to digitize these details from the numerical solution. This case should not be used
for algorithm benchmarking.

6. Conclusion

The chemotaxis invasion problem described here constitutes a challenging numerical test case for HCL
algorithm development. The invasion problem involves nonlinearities and coupling in both the flux and source
terms of the hyperbolic system. This test case is more challenging than other standard HCL test cases with the
advantage of being analytically tractable. Data corresponding to particular invasion shapes are presented for
benchmarking purposes.

Most previously documented shock-fronted chemotactic traveling wave profiles have been limited to con-
stant v(g). These profiles have simple shapes and are therefore not particularly well-suited for algorithm
benchmarking. Recent analysis has demonstrated the existence of nonmonotone traveling wave invasion
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profiles with multiple discontinuities. Such profiles are obtained by choosing different v(g) functions. These
nonmonotone invasion profiles are ideal for algorithm testing as the details of the invasion profiles, such as
the position of turning points and discontinuities, can be deduced in the phase plane and used to assess algo-
rithm performance.

It is interesting to remark that the use of HCLs with solutions containing oscillations behind a shock
for algorithm testing is unique. A key requirement of numerical algorithms for HCLs is the preclusion of
artificial numerical oscillations. Given that most invasion profiles reported in the literature have monoton-
ically decreasing shapes coupled with the historical prevalence of artificial oscillations associated with
numerical solutions of HCLs, it is possible that the invasion profiles presented here might, at first glance,
appear to be affected by numerical error. The phase plane analysis shows that the nonmonotone invasion
profiles are expected and ought to be replicated by a numerical algorithm. Therefore we suggest that in
addition to testing an algorithm’s ability to accurately simulate monotone solutions, an algorithm should
also be able to accurately simulate problems with true oscillations and shocks. The chemotactic invasion
profiles described here, with an oscillatory region behind the leading shock, provide such test cases and
are therefore naturally of interest to algorithm developers within the computational fluid dynamics
community.
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